Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Appl Microbiol ; 134(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38049377

RESUMEN

AIMS: Quercus infectoria (Qi), a traditional herbal plant with a broad spectrum of activities on multidrug-resistant bacteria, has been developed for hand sanitizer applications. METHODS AND RESULTS: Antimicrobial activity was evaluated using agar-well diffusion and broth microdilution method. Bactericidal activity was determined following the European Standard 1276 antibacterial suspension test. Neutralization assay was performed to assess antirespiratory syncytial virus. Safety, stability, and skin permeation of Qi hand gel was investigated. Qi hand sanitizer gel inhibited microorganisms ranging from 99.9% to 99.999% against Enterococcus faecalis, Staphylococcus aureus, methicillin-resistant Staph. aureus, Staph. epidermidis, Staph. pseudintermedius, Staph. saprophyticus, Streptococcus pyogenes, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Candida albicans. A significant reduction in main human dermatophytes including Microsporum canis, M. gypseum, and Talaromyces marneffei of ∼50% was observed (P < .05). Qi hand sanitizer gel inactivated >99% viral particles entering human laryngeal epidermoid carcinoma cells in a dose-dependent manner. Scanning electron micrographs further illustrated that Qi hand sanitizer gel disrupted microbial cell membrane after 1-min contact time resulting in cell death. Qi hand sanitizer gel delivered emollient compounds through simulated human skin layers and showed no cytotoxicity on fibroblast cells. Moreover, Qi hand sanitizer gel demonstrated stability under extreme conditions. CONCLUSIONS: Qi hand sanitizer gel was able to inhibit various microorganisms including bacteria, dermatophytes, and virus.


Asunto(s)
Desinfectantes para las Manos , Quercus , Infecciones Estafilocócicas , Humanos , Extractos Vegetales/farmacología , Desinfectantes para las Manos/farmacología , Quercus/química , Antibacterianos/farmacología , Staphylococcus aureus , Escherichia coli , Pruebas de Sensibilidad Microbiana
2.
PLoS One ; 18(10): e0291505, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37862295

RESUMEN

CONTEXT: The emergence of multidrug-resistant (MDR) pathogens poses a significant challenge for global public health systems, increasing hospital morbidity and mortality and prolonged hospitalization. OBJECTIVE: We evaluated the antimicrobial activity of a thermosensitive hydrogel containing bio-synthesized silver nanoparticles (bio-AgNPs) based on chitosan/poloxamer 407 using a leaf extract of Eucalyptus calmadulensis. RESULTS: The thermosensitive hydrogel was prepared by a cold method after mixing the ingredients and left at 4°C overnight to ensure the complete solubilization of poloxamer 407. The stability of the hydrogel formulation was evaluated at room temperature for 3 months, and the absorption peak (420 nm) of the NPs remained unchanged. The hydrogel formulation demonstrated rapid gelation under physiological conditions, excellent water retention (85%), and broad-spectrum antimicrobial activity against MDR clinical isolates and ATCC strains. In this regard, minimum inhibitory concentration and minimum microbial concentration values of the bio-AgNPs ranged from 2-8 µg/mL to 8-128 µg/mL, respectively. Formulation at concentrations <64 µg/mL showed no cytotoxic effect on human-derived macrophages (THP-1 cells) with no induction of inflammation. CONCLUSIONS: The formulated hydrogel could be used in biomedical applications as it possesses a broad antimicrobial spectrum and anti-inflammatory properties without toxic effects on human cells.


Asunto(s)
Antiinfecciosos , Quitosano , Eucalyptus , Nanopartículas del Metal , Humanos , Quitosano/farmacología , Poloxámero , Plata/farmacología , Materiales Biocompatibles , Antiinfecciosos/farmacología , Hidrogeles , Extractos Vegetales/farmacología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
3.
Biotechnol J ; 18(10): e2300008, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37300817

RESUMEN

Biofilm-associated infections are a critical element in infectious diseases and play an important role in antibiotic resistance. Biosynthesized gold nanoparticles (AuNPs) using ethanolic extract of Musa sapientum unripe fruit were performed. The nanoparticles demonstrated an absorption peak at 554 nm with particle sizes ranging from 5.45 to 104.44 nm. High negative zeta potential value of -33.97 mV confirmed the high stability of AuNPs. The presence of bioconstituents responsible for capping and stabilization was indicated by intensity changes of several peaks from Fourier-transform infrared spectroscopy analysis. The minimum inhibitory concentrations (MIC) of the biosynthesized AuNPs against important pathogens ranged from 10 to 40 µg mL-1 . Synthesized nanoparticles at 0.062 to 0.5 × MIC significantly inhibited biofilm formation in all the tested microorganisms (p < 0.05). Scanning electron microscopy and confocal scanning laser microscopy images clearly illustrated in disruption and architectural changes of microbial biofilms at sub-MIC of biosynthesized AuNPs. Excellent antioxidant and antityrosinase activities of AuNPs were observed. The biosynthesized AuNPs at 20 µg mL-1 significantly inhibited nitric oxide production by 93% in lipopolysaccharide-stimulated RAW 264.7 cells, compared with control (p < 0.05). The biosynthesized AuNPs at 0.6 to 40 µg mL-1 demonstrated no toxic effects on L929 fibroblast cells.

4.
Appl Microbiol Biotechnol ; 107(2-3): 623-638, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36562803

RESUMEN

COVID-19 patients have often required prolonged endotracheal intubation, increasing the risk of developing ventilator-associated pneumonia (VAP). A preventive strategy is proposed based on an endotracheal tube (ETT) modified by the in situ deposition of eucalyptus-mediated synthesized silver nanoparticles (AgNPs). The surfaces of the modified ETT were embedded with AgNPs of approximately 28 nm and presented a nanoscale roughness. Energy dispersive X-ray spectroscopy confirmed the presence of silver on and inside the coated ETT, which exhibited excellent antimicrobial activity against Gram-positive and Gram-negative bacteria, and fungi, including multidrug-resistant clinical isolates. Inhibition of planktonic growth and microbial adhesion ranged from 99 to 99.999% without cytotoxic effects on mammalian cells. Kinetic studies showed that microbial adhesion to the coated surface was inhibited within 2 h. Cell viability in biofilms supplemented with human tracheal mucus was reduced by up to 95%. In a porcine VAP model, the AgNPs-coated ETT prevented adhesion of Pseudomonas aeruginosa and completely inhibited bacterial invasion of lung tissue. The potential antimicrobial efficacy and safety of the coated ETT were established in a randomized control trial involving 47 veterinary patients. The microbial burden was significantly lower on the surface of the AgNPs-coated ETT than on the uncoated ETT (p < 0.05). KEY POINTS: • Endotracheal tube surfaces were modified by coating with green-synthesized AgNPs • P. aeruginosa burden of endotracheal tube and lung was reduced in a porcine model • Effective antimicrobial activity and safety was demonstrated in a clinical trial.


Asunto(s)
Antiinfecciosos , COVID-19 , Enfermedades Transmisibles , Nanopartículas del Metal , Neumonía Asociada al Ventilador , Humanos , Animales , Porcinos , Antibacterianos/farmacología , Plata/farmacología , Hospitales Veterinarios , Nanopartículas del Metal/química , Cinética , Bacterias Gramnegativas , Bacterias Grampositivas , Antiinfecciosos/farmacología , Neumonía Asociada al Ventilador/prevención & control , Neumonía Asociada al Ventilador/microbiología , Biopelículas , Intubación Intratraqueal/métodos , Mamíferos
5.
Nanomaterials (Basel) ; 12(22)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36432345

RESUMEN

Catheter-associated urinary tract infections (CAUTIs) are significant complications among catheterized patients, resulting in increased morbidity, mortality rates, and healthcare costs. Foley urinary catheters coated with synthesized silver nanoparticles (AgNPs) using Eucalyptus camaldulensis leaf extract were developed using a green chemistry principle. In situ-deposited AgNPs with particle size ranging between 20 and 120 nm on the catheter surface were illustrated by scanning electron microscopy. Atomic force microscopy revealed the changes in surface roughness after coating with nanoparticles. The coated catheter could significantly inhibit microbial adhesion and biofilm formation performed in pooled human urine-supplemented media to mimic a microenvironment during infections (p 0.05). AgNPs-coated catheter exhibited broad-spectrum antimicrobial activity against important pathogens, causing CAUTIs with no cytotoxic effects on HeLa cells. A reduction in microbial viability in biofilms was observed under confocal laser scanning microscopy. A catheter bridge model demonstrated complete prevention of Proteus mirabilis migration by the coated catheter. Significant inhibition of ascending motility of Escherichia coli and P. mirabilis along the AgNPs-coated catheter was demonstrated in an in vitro bladder model (p 0.05). The results suggested that the AgNPs-coated urinary catheter could be applied as an alternative strategy to minimize the risk of CAUTIs by preventing bacterial colonization and biofilm formation.

6.
Int J Biol Macromol ; 216: 235-250, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35780920

RESUMEN

Effective treatment of infected wounds requires a comprehensive wound dressing with a combination of antibacterial, antioxidative, and anti-inflammatory effects. Biodegradable wound dressings incorporating nanostructured material were developed using polyvinyl alcohol with xanthan gum, hypromellose, or sodium carboxymethyl cellulose and extensively evaluated for antibacterial and wound healing efficacy. Synthesized silver nanoparticles and wound dressings displayed λmax at 420 nm with zeta potential ≈ - 35 mV. Significant growth inhibition with >99 % reduction in CFU/ml (p < 0.05) against important wound pathogens including Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, and Candida albicans were observed. Within 1 h of treatment, hypromellose nanocomposite demonstrated excellent bactericidal effects with a 99.9 % of reduction in growth. In addition, wound dressings demonstrated inhibitory activities against free radical scavengers. Wound dressings demonstrated a significant reduction in the inflammatory response in RAW 264.7 macrophages (p < 0.001). Ex-vivo diffusion demonstrated zero-order release and steady-state flux between 0.1571-0.2295 µg/ml/cm2h with 0.124-0.144 permeability coefficient after 10 h. Usage in animals further confirmed that the hypromellose nanocomposite accelerated the wound healing process with biocompatibility. The results suggested that hybrid biodegradable dressings can be effectively applied to treat infected wounds and attenuate inflammatory responses.


Asunto(s)
Nanopartículas del Metal , Infección de Heridas , Animales , Antibacterianos/farmacología , Vendajes , Carboximetilcelulosa de Sodio/farmacología , Escherichia coli , Derivados de la Hipromelosa/farmacología , Polisacáridos Bacterianos , Alcohol Polivinílico/farmacología , Plata/farmacología , Sodio/farmacología , Cicatrización de Heridas , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiología
7.
Phytochemistry ; 200: 113179, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35398088

RESUMEN

Fourteen undescribed phloroglucinol-meroterpenoids, namely eucalypcamals A-N, were isolated from a CH2Cl2 extract of the leaves of Eucalyptus camaldulensis Dehnh. In addition, from the same extract, twelve known phloroglucinols, three known flavonoids, and four known phenolic compounds were also isolated. The structures of the undescribed compounds were analyzed by 1D and 2D nuclear magnetic resonance (NMR) spectroscopy, and high resolution electrospray ionization mass spectrometry (HRESIMS). The assignments of the absolute configurations were performed by comparing the experimental electronic circular dichroism (ECD) data with the calculated values. Eucalyprobusal E was found to be cytotoxic against HCT116, Jurkat, and MDA-MB-231 cell lines with IC50 values of 17.6, 9.44, and 17.9 µM, respectively. Eucalrobusone F exhibited antibacterial activity against methicillin-resistant S. aureus (MRSA) and S. aureus with minimum inhibitory concentration/minimum bactericidal concentration (MIC/MBC) values of 4/4 µg/mL while euglobal Ia1 showed antifungal activity with MIC/MFC values of 16/16 µg/mL.


Asunto(s)
Eucalyptus , Staphylococcus aureus Resistente a Meticilina , Antibacterianos/farmacología , Eucalyptus/química , Pruebas de Sensibilidad Microbiana , Floroglucinol/química , Extractos Vegetales/química , Hojas de la Planta/química , Staphylococcus aureus
8.
Biofouling ; 37(5): 538-554, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34148443

RESUMEN

Surface modification is an emerging strategy for the design of contact materials. Fabricated alumina discs were functionalized by deposition of biogenic silver nanoparticles. The surfaces were characterized for physico-chemical, antibacterial and antibiofilm properties against microbial pathogens. The surface demonstrated improved hydrophobicity and a surface silver nanoparticle content of 6.4 w%. A reduction of more than 99.9% in CFU mL-i was observed against the Gram-positive and Gram-negative bacteria tested, with >90% reduction of the fungal isolate. After 4 h, microbial adhesion was reduced by >99.9 and 90% for Escherichia coli and Staphylococcus aureus, respectively. Scanning electron micrographs further revealed a biofilm reduction. Cell viability tests indicated a bioincompatibility higher than 80% with Caco-2 and HaCaT cell lines after 48 h contact. The results suggest that deposition of biogenic silver nanoparticles on the surface of contact materials could be employed as a strategy to prevent biofilm formation.


Asunto(s)
Antiinfecciosos , Incrustaciones Biológicas , Nanopartículas del Metal , Óxido de Aluminio , Antibacterianos/farmacología , Biopelículas , Incrustaciones Biológicas/prevención & control , Células CACO-2 , Bacterias Gramnegativas , Bacterias Grampositivas , Humanos , Pruebas de Sensibilidad Microbiana , Porosidad , Plata/farmacología
9.
Biotechnol J ; 16(9): e2100030, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34102004

RESUMEN

Failure in the prevention of cross-transmission from contaminated gloves has been recognized as an important factor that contributes to the spread of several healthcare-associated infections. Ex situ coating process with silver nanoparticles (AgNPs) using Eucalyptus citriodora ethanolic leaf extract as reducing and capping agents to coat glove surfaces has been developed to prevent this mode of transmission. Elemental analysis of coated gloves showed 24.8 Wt% silver densely adhere on the surface. The coated gloves fully eradicated important hospital-acquired pathogens including Gram-positive bacteria, Gram-negative bacteria, and yeasts within 1 h. The coated gloves showed significant reduction, an average of five logs when tested against all standard strains and most clinical isolates (p < 0.01). Following prolonged exposure, the coating significantly reduced the numbers of most adhered pathogenic species, compared with uncoated gloves (p < 0.0001). AgNPs-coated gloves reduced microbial adhesion of mixed-species biofilms. A series of contamination and transmission assays demonstrated no transmission of viable organisms. Biocompatibility analysis confirmed high viability of HaCaT and L929 cells at all concentrations of AgNPs tested. The coated gloves were non-toxic with direct contact with L929 cells. The highly efficacious AgNPs-coated gloves potentially provide additional protection against transmission of healthcare-associated infections.


Asunto(s)
Antiinfecciosos , Infección Hospitalaria , Eucalyptus , Nanopartículas del Metal , Antibacterianos/farmacología , Biopelículas , Humanos , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/farmacología , Plata/farmacología
10.
Biotechnol Bioeng ; 118(4): 1597-1611, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33421102

RESUMEN

Bionanotechnology has increasingly gained attention in biomedical fields as antifungal and antibiofilm agents. In this study, biosynthesized silver nanoparticles (bio-AgNPs) using aqueous Eucalyptus camaldulensis leaf extract were successfully performed by a one-step green approach. Spherical-shaped nanoparticles, approximately 8.65 nm, exhibited noncytotoxicity to erythrocytes, HeLa, and HaCaT cells. The synthesized nanoparticles showed strong fungicidal activity ranging from 0.5 to 1 µg/ml. The nanoparticles affected Candida adhesion and invasion into host cells by reduced germ tube formation and hydrolytic enzyme secretion. Inhibitory effects of bio-AgNPs on Candida biofilms were evaluated by the prevention of yeast-to-hyphal transition. A decrease in cell viability within mature biofilm demonstrated the ability of bio-AgNPs to penetrate into the extracellular matrix and destroy yeast cell morphology, leading to cell death. Molecular biology study on biofilms confirmed downregulation in the expression of genes ALS3, HWP1, ECE1, EFG1, TEC1, ZAP1, encoding hyphal growth and biofilm development and PLB2, LIP9, SAP4, involved in hydrolytic enzymes. In addition to candida treatment, the bio-AgNPs could be applied as an antioxidant to protect against oxidative stress-related human diseases. The findings concluded that bio-AgNPs could be used as an antifungal agent for candida treatment, as well as be incorporated in medical devices to prevent biofilm formation.


Asunto(s)
Biopelículas/efectos de los fármacos , Candida albicans/fisiología , Eucalyptus/química , Nanopartículas del Metal/química , Extractos Vegetales/química , Hojas de la Planta/química , Plata , Biopelículas/crecimiento & desarrollo , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Plata/química , Plata/farmacología
11.
Antibiotics (Basel) ; 10(2)2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499400

RESUMEN

Rhodomyrtone, a plant-derived principal compound isolated from Rhodomyrtus tomentosa (Myrtaceae) leaf extract, was assessed as a potential natural alternative for the treatment of acne vulgaris. The clinical efficacy of a 1% liposomal encapsulated rhodomyrtone serum was compared with a marketed 1% clindamycin gel. In a randomized and double-blind controlled clinical trial, 60 volunteers with mild to moderate acne severity were assigned to two groups: rhodomyrtone serum and clindamycin gel. The volunteers were instructed to apply the samples to acne lesions on their faces twice daily. A significant reduction in the total numbers of acne lesions was demonstrated in both treatment groups between weeks 2 and 8 (p < 0.05). Significant differences in acne numbers compared with the baseline were evidenced at week 2 onwards (p < 0.05). At the end of the clinical trial, the total inflamed acne counts in the 1% rhodomyrtone serum group were significantly reduced by 36.36%, comparable to 34.70% in the clindamycin-treated group (p < 0.05). Furthermore, a commercial prototype was developed, and a clinical assessment of 45 volunteers was performed. After application of the commercial prototype for 1 week, 68.89% and 28.89% of volunteers demonstrated complete and improved inflammatory acne, respectively. All of the subjects presented no signs of irritation or side effects during the treatment. Most of the volunteers (71.11%) indicated that they were very satisfied. Rhodomyrtone serum was demonstrated to be effective and safe for the treatment of inflammatory acne lesions.

12.
J Microbiol Methods ; 174: 105955, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32442657

RESUMEN

Surgical site infection arising from microbial contamination of surgical wounds is a major cause of surgical complications and prolong hospital stay. In this study, silver nanoparticles (AgNPs) biosynthesized using Eucalyptus camaldulensis extract were deposited on silk surgical sutures by ex situ method. Adherence of AgNPs to the surface of sutures was observed, with significantly reduced surface roughness (323.7 ± 16.64 nm), compared with uncoated sutures (469.3 ± 7.31 nm) (P < .001). Elasticity of AgNPs-coated (13 ± 1.485%) and uncoated (8 ± 0.728%) sutures was also significantly different (P < .05). Quantification of AgNPs demonstrated release of 3.88, 5.33, 5.44, 6.14% on day 1, 3, 5, 7, respectively from total Ag+ concentration (6.14 ± 0.14 µg/mL). The coated sutures produced a strong bacteriostatic effect on Staphylococcus aureus, an important wound pathogen with approximately 99% reduction in growth. In contrast, bactericidal effects were observed with Gram-negative pathogens including Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Cytocompatibility tested on human keratinocyte cells exhibited approximately 80% cell viability. The coated sutures revealed stable antibacterial properties up to 12 weeks. This work suggested the potency of AgNPs-coated sutures as a suitable biocompatible medical device for the management of surgical site infections.


Asunto(s)
Materiales Biocompatibles Revestidos , Eucalyptus , Infecciones por Bacterias Gramnegativas/terapia , Extractos Vegetales , Plata , Infección de la Herida Quirúrgica/terapia , Antibacterianos/farmacología , Materiales Biocompatibles Revestidos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Humanos , Nanopartículas del Metal , Extractos Vegetales/farmacología , Seda , Plata/farmacología , Suturas
13.
Anaerobe ; 43: 61-68, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27923605

RESUMEN

Virulence enzymes and biofilm a play crucial role in the pathogenesis of Propionibacterium acnes, a major causative agent of acne vulgaris. In the present study, the effects of rhodomyrtone, a pure compound identified from Rhodomyrtus tomentosa (Aiton) Hassk. leaves extract against enzyme production and biofilm formation production by 5 clinical isolates and a reference strain were evaluated. The degree of hydrolysis by both lipase and protease enzymes significantly decreased upon treatment with the compound at 0.125-0.25 µg/mL (p < 0.05). Lipolytic zones significantly reduced in all isolates while decrease in proteolytic activities was found only in 50% of the isolates. Rhodomyrtone at 1/16MIC and 1/8MIC caused significant reduction in biofilm formation of the clinical isolates (p < 0.05). Percentage viability of P. acnes within mature biofilm upon treated with the compound at 4MIC and 8MIC ranged between 40% and 85%. Pronounced properties of rhodomyrtone suggest a path towards developing a novel anti-acne agent.


Asunto(s)
Acné Vulgar/microbiología , Biopelículas/efectos de los fármacos , Myrtaceae/química , Extractos Vegetales/farmacología , Propionibacterium acnes/efectos de los fármacos , Xantonas/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Biopelículas/crecimiento & desarrollo , Humanos , Lipasa/efectos de los fármacos , Lipasa/metabolismo , Pruebas de Sensibilidad Microbiana , Péptido Hidrolasas/efectos de los fármacos , Péptido Hidrolasas/metabolismo , Extractos Vegetales/química , Hojas de la Planta/química , Propionibacterium acnes/enzimología , Propionibacterium acnes/crecimiento & desarrollo , Xantonas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...